#736beb #f08975 الکتریکی :: دانشنامه http://poll.fm/5q8y7-fi

دانشنامه

دانشنامه
آخرین نظرات
  • ۴ مرداد ۹۶، ۱۲:۳۸ - محمد ....
    سنگینه
  • ۲۲ تیر ۹۶، ۱۷:۱۳ - علی رحمانی پور
    عالی
  • ۷ تیر ۹۶، ۱۹:۱۷ - سیدمحمدمهدی زیدی
    چه جالب
نویسندگان

انرژی الکتریکی

مقدمه

هر ماده از تعداد بسیار اتم تشکیل شده است که هر اتم نیز از سه قسمت نوترون ، پروتون و الکترون تشکلیل شده است. تعداد الکترونها با تعداد پروتونها در حالت عادی (خنثی) برابر است، الکترون دارای بار منفی و پروتون دارای بار مثبت می‌باشند، که الکترونها به دور پروتن و نوترون (هسته اتم) با سرعت بسیار زیادی می‌چرخند. در اثر این چرخش نیروی گریز از مرکزی بوجود می‌آید که مقدار این نیرو با مقدار نیروی جاذبه بین الکترونها و هسته برابر است، پس این برابری نیرو الکترونها را در حالت تعادل نگه می‌دارد و نمی‌گذارد که از هسته دور شوند.


تصویر





یک سیم مسی هم دارای تعداد زیادی اتم و در نتیجه الکترون است. هر گاه ما بتوانیم توسط یک نیرویی الکترونهای در حال چرخش به دور هسته را از مدار خود خارج کنیم و در یک جهت معین به حرکت در آوریم جریان الکتریکی برقرار می‌شود. پس این نکته را دریافتیم که جریان برق چیزی جز حرکت الکترونها نیست، البته این حرکت بصورت انتقالی انجام می‌شود، یعنی یک اتم تعدادی الکترون به اتم کناری خود می‌دهد و اتم کناری نیز به همین ترتیب تعدادی الکترون به اتم بعدی می‌دهد و بدین صورت جریان برقرار می‌شود. پس هر گاه که گفته شود جریان برق کم یا زیاد است، یعنی تعداد الکترونهایی که در مسیر سیم در حال حرکت هستند کم یا زیاد است.

نیروهایی که باعث جدا شدن الکترون از هسته می‌شوند

نیروی مغناطیسی خارجی

هرگاه یک سیم را در یک میدان مغناطیسی حرکت دهیم؛ نیروی این میدان باعث حرکت الکترونهای سیم می‌شود.

ضربه

فرض کنید یک اتوبوس کنار خیابان ایستاده و تمام مسافران آن محکم روی صندلیها نشستند، بعد یک اتومبیل دیگر با سرعت زیاد به جلوی این اتوبوس برخورد می‌کند. حال اتوبوس با سرعت به عقب پرتاب می‌شود و مسافران که در آنها اینرسی سکون ذخیره شده تمایل دارند که به همان حالت سکون باقی بمانند، در نتیجه اتوبوس به عقب رفته ولی مسافران در همان نقطه مکانی باقی می‌مانند. در نتیجه مسافران از صندلیهای خود جدا شده و از شیشه اتوبوس به بیرون پرتاب می‌شوند. پس این نیروی ضربه بود که مسافران را از اتوبوس جدا کرد، به همین صورت نیز ضربه می‌تواند الکترونها را از مدار خود خارج کند. نمونه این تولید برق در فندکها می‌باشد.


تصویر

انرژی خورشیدی

انرژی خورشیدی نیز دارای نیرویی است که قادر است الکترونها را از مدار خود جدا کند.

حرارت و ...

حرارت باعث می‌شود که جنبش ملکولی اجسام زیاد شود، در اثر این جنبش تعداد زیادی مولکول به شدت باهم برخورد می‌کنند که همان نیروی ضربه را بوجود می‌آوردند و باعث جدا شدن الکترون از اتم می‌شوند. یک سیم مانند دالانی می‌ماند که در یک دوره زمانی مشخص تعداد معینی از افراد می‌توانند از آن عبور کنند، یعنی برای اینکه در دوره زمانی مشخص مثلا در 1 دقیقه افراد بیشتری بتوانند از این دالان عبور کنند باید سرعت حرکت آنها بیشتر شود، در نتیجه در اثر برخورد با هم و با دیواره دالان باعث ایجاد اصطکاک و گرما می‌شوند.

برای سیم نیز چنین اتفاقی می‌افتد، یعنی اگر بخواهیم تعداد الکترونهای در حال حرکت را افزایش دهیم (جریان را افزایش دهیم) سرعت حرکت الکترونها و نیز تعداد الکترونهایی که همراه باهم از مقطع سیم عبور می‌کنند افزایش می‌یابد، در نتیجه اصطکاک افزایش یافته و تولید گرما می‌کند که اگر جریان بیش از حد مجاز خود از سیم عبور کند گرمای تولید شده باعث ذوب شدن سیم می‌شود (سیم می‌سوزد).


img/daneshnameh_up/8/85/electricenergy_1.jpg

ولتاژ

آیا یک منبع که ولتاژش بیشتر باشد برق بیشتری تولید می‌کند یا منبعی که جریانش بیشتر باشد؟ هرگاه یک اتم الکترنهای

بار الکتریکی

مقدمه

اگر یک روز خشک و آفتابی روی قالی راه بروید، به محض این که دستتان با دستگیره فلزی تماس پیدا می‌کند، جرقه ایجاد می‌شود. و یا هنگام باریدن باران ، آذرخش و رعد و برق را بارها ملاحظه کرده‌ایم. تمام این موارد حاکی از این است که مقدار زیادی بار الکترونی در اجسام پیرامون ما و حتی در بدن ما ذخیره شده است. خنثی بودن غالب اشیا مشاهده‌ پذیر و قابل لمس جهان ، از لحاظ الکتریکی ، این واقعیت را تایید می‌کند که تمام اشیا حاوی تعداد زیادی بار الکتریکی مثبت و منفی هستند که چون تعداد این دو نوع بار الکتریکی یکسان است، لذا از نظر آثار خارجی کاملا اثر یکدیگر را بی‌اثر می‌کنند. فقط هنگامی که این توازن زیبای الکتریکی از بین برود، طبیعت آثار بارهای مثبت و منفی آشکار می‌شود. بنابراین زمانی که گفته می‌شود، جسمی باردار است، منظور این است که بار الکتریکی در جسم اندکی نامتوازن شده است.


تصویر

یک آزمایش ساده

یک میله شیشه‌ای را در دست خود گرفته و با پارچه ابریشمی مالش دهید. عمل مالش سبب می‌شود که مقدار کمی بار الکتریکی از یک جسم به جسم دیگر منتقل شود، و لذا خنثایی الکتریکی آن دو به هم می‌خورد. حال اگر این میله باردار بوسیله یک رشته نخ از نقطه آویزان کنیم وسیله شیشه‌ای دیگری را که به صورت مشابه باردار شده است به این میله نزدیک کنیم، دو میله یکدیگر را می‌رانند. اما اگر یک میله پلاستیکی را که با یک پوست خز باردار شده است به این میله نزدیک کنیم، در این صورت میله پلاستیکی انتهای باردار میله شیشه‌ای آویزان شده را جذب می‌کند.

بنابراین نتیجه می‌گیریم که دو نوع بار الکتریکی وجود دارد. یک نوع از آن ، یعنی بار الکتریکی که روی شیشه مالش داده شده ایجاد می‌شود را بار مثبت و نوع دیگر ، یعنی بار الکتریکی ایجاد شده روی میله بار منفی می‌نامیم همچنین نتیجه می‌گیریم که بارهای الکتریکی همنام یکدیگر را دفع می‌کنند و برعکس بارهای الکتریکی غیر همنام همدیگر را جذب می‌کنند.

تاریخچه انتخاب نامهای مثبت و منفی

انتخاب نامهای مثبت و منفی برای بارهای الکتریکی مربوط به بنجامین فرانکلین (Benjamin Franklin) است. او علاوه بر کارهای بزرگی که انجام داد، دانشمندی با شهرت بین المللی بود. فرانکلین واژه‌های بار و باتری را وارد فرهنگ الکتریسیته کرد. بنابراین به رسم احترام شاید بد نباشد که ، هرگاه باتری ماشین حسابمان خالی می‌شود و ما در حین تعویض باتری علامتهای + و – را روی باتری مشاهده می‌کنیم، که نشان دهنده قطبهای مثبت و منفی باتری هستند، به یاد فرانکلین این دانشمند بزرگ عالم فیزیک بیافتیم.


تصویر

بررسی کمی نیروی موجود میان ، بارهای الکتریکی

در مبحث الکترواستاتیک که بارهای الکتریکی ساکن و یا با سرعت فوق العاده کم مورد بحث قرار می‌گیرد، نیروهایی که بارهای الکتریکی هم‌نام و غیر هم‌نام به یکدیگر وارد می‌کنند توسط قانون کولن مورد بررسی قرار می‌گیرد. با استفاده از این قانون می‌توان علاوه بر مقدار این نیروها ، نوع آنها را از لحاظ جاذبه یا دافعه بودن مشخص نمود.

کاربرد نیروهای الکتریکی بین اجسام باردار

نیروهای الکتریکی موجود بین اجسام باردار در صنعت کاربردهای زیادی دارند، که از آن جمله می‌توان به رنگ افشانی الکتروستاتیکی ، گردنشانی ، دود گیری ، مرکب پاشی چاپگرها و فتوکپی اشاره کرد. به عنوان مثال در یک دستگاه فتوکپی دانه‌های حامل ماشین با ذرات گرد سیاه رنگی که تونر نام دارد، پوشیده می‌شوند. این ذرات بوسیله نیروهای الکتروستاتیکی به دانه حامل می‌چسبند.

ذرات با بار منفی تونر ، سرانجام از دانه‌های حاملشان جدا می‌شوند. جذب این ذرات توسط تصویر با بار مثبت متن مورد نسخه برداری ، که بر روی یک غلتک چرخان قرار دارد، صورت می‌گیرد. آنگاه ورقه کاغذ باردار ذرات تونر را روی غلتک جذب می‌کند و بعد از پخته شدن و نشستن ذرات بر روی کاغذ ، کپی مورد نظر به دست می‌آید.

انتقال گرما

ا

انتقال رسانشی آزمایشهای مربوط به گرما

img/daneshnameh_up/3/38/garma.JPG

اگر یک انتهای سیخی را به مدت زیادی داخل اجاقی گرم نماییم، انتهای دیگر آن نیز گرم می‌شود. آزمایش‌های مربوط به گرما از طریق بدنه سیخ ، از انتهای داغ به انتهای سرد منتقل می‌شود. این روش انتقال آزمایشهای مربوط به گرما ، یا شارش انرژی از طریق ماده را رسانش گرمایی می‌گویند. فلزات ، بویژه نقره ، مس و آلومینیوم رساناهای خوب آزمایشهای مربوط به گرما و بیشتر غیر فلزات رساناهای ضعیف آزمایشهای مربوط به گرما هستند. ته مسی ماهی‌تابه آزمایشهای مربوط به گرما را در تمام جهات و بطور یکنواخت در ته ماهی‌‌تابه پخش می‌کند. دسته ماهی‌تابه از جنس چوب یا پلاستیک است که رساناهای ضعیفی هستند. وقتی از این مواد برای جلوگیری از رسانش آزمایشهای مربوط به گرما استفاده می‌شود، عایق حرارتی نامیده می‌شوند.


انتقال همرفت آزمایشهای مربوط به گرما

آب رسانای بسیار ضعیف گرماست. اگر یک ظرف آب را زیر شعله اجاق گاز قرار دهید، ممکن است سطح آب به جوش آید، در حالی که ته آب هنوز سرد باشد. برای اینکه آب بطور یکنواخت گرم شود باید آنرا روی شعله اجاق گاز گذاشت. در این حالت ، آب در ته ظرف گرم و منبسط می‌شود و چگالی آن کاهش می‌یابد. در نتیجه آب گرم از ته ظرف بالا می‌آید و آب سرد پایین رفته و به شعله نزدیکتر می‌شود. این فرآیند را که انتقال همرفت می‌نامند، آنقدر ادامه می‌یابد تا تمامی حجم آب داخل ظرف به نقطه جوش برسد.

انتقال آزمایشهای مربوط به گرما از طریق همرفت فقط تحت شرایط معینی اتفاق می‌افتد. اولین شرط این است که ماده شاره باشد (مایع یا گاز) تا بخش گرم کننده آن بتواند از میان بخش سردتر بالا برود. همچنین شاره باید از پایین گرم یا از بالا سرد شود. در خانه بخاری نزدیک کف اتاق قرار دارد در حالیکه قسمت سردکن یخچال در بالای آن واقع است. وسایل زیادی برای جلوگیری از انتقال آزمایشهای مربوط به گرما از طریق رسانش وجود دارد.

این وسایل با جلوگیری از جریان هوا مانع انتقال آزمایش‌های مربوط به گرما می‌شوند. برای همین ، فضاهای میان دیوارهای خانه را با اسفنج پر می‌کنیم، خودمان را با لایه‌های پشمی می‌پوشانیم و کولمنهای مسافرتی را از اسفنج می‌سازیم. آزمایشها نشان می‌دهد هوا رسانای ضعیفی است و اگر ما بتوانیم آنرا گیر بیاندازیم، می‌توانیم از انتقال همرفتی گرما هم جلوگیری کنیم.


img/daneshnameh_up/8/86/4sun_t.gif




انتقال آزمایشهای مربوط به گرما از طریق تابش

آزمایشهای مربوط به گرما از خورشید از طریق یک فضای وسیع خلا و تهی به زمین می‌رسد و این مسیر را بصورت اشعه ، مانند نور ولی نامرئی طی می‌کند. هر جسم گرم ، حتی انسان از خود اشعه‌هایی گسیل می‌کند. اجسام سرد این آزمایشهای مربوط به گرما را جذب می‌کنند ، بنابراین مثل همیشه انتقال خالص آزمایشهای مربوط به گرما از جسم گرم به جسم سرد صورت می‌گیرد. از اینرو ، آزمایش‌های مربوط به گرما همانند نور از طریق تابش و به خط مستقیم منتقل می‌شود. برای همین ، وقتی در آزمایشهای مربوط به هوا باز مقابل آتش می‌نشینیم، صورت ما از آزمایشهای مربوط به گرما سرخ می‌شود و پشت ما سردتر می‌شود.

کارایی یک جسم در تابش یا جذب آزمایشهای مربوط به گرما به رنگ سطح آن بستگی دارد. جسم سیاه هر تابشی را به سرعت و با کارایی زیاد جذب می‌کند. توانایی تابش انرژی گرمایی از سطح بستگی نزدیکی به توانایی جذب انرژی تابشی توسط آن سطح دارد. جسم سیاه هنگامی که گرم است، یک تابنده عالی است. به همین دلیل پرده‌های خنک کننده موتورها را همواره رنگ سیاه می‌زنند. اما جسم سفید نه جذب کننده خوبی است و نه تابشگر خوب است. به عنوان مثال سطح نقره مانند اغلب فلزات همانند جسم سفید عمل می‌کنند. برای عایق بندی اتاقکهای زیر شیروانی از یک لایه ورق آلومینیوم نیز استفاده می‌شود. ورق آلومینیوم از تابش گرمای داخل به خارج در زمستان و از تابش گرمای خارج به داخل در تابستان جلوگیری می‌کند.

فلز

شکل واقعی فلزات

شکل واقعی فلزات به اندازه یون و تعداد الکترون‌هایی که هر یون در حوزه اشتراکی دارد و انرژی یون‌ها و الکترون‌ها بستگی دارد. هر قدر فلز گرمتر شود این انرژی زیادتر خواهد شد. پس فلزات گوناگون ممکن است طرح‌های گوناگونی به خود بگیرند. یک فلز ممکن است در حرارت‌های مختلف ، طرح‌های متنوعی را اختیار کند، اما در بیشتر آرایش‌ها ، یون‌ها کاملا پهلوی هم قرار دارند، و معمولا تراکم در فلزات زیادتر از دیگر مواد است.

اختلافات عمده فلزات و دیگر جامدات و مایعات

  • فلزات هادی خوب برق هستند. چون الکترون‌های آنها برای حرکت مانعی ندارند. همه فلزات جامد و مایع گروهی الکترون آزاد دارند، طبعا همه فلزات هادی‌های خوب الکتریسیته می‌باشند. به این سبب فلزات از دیگر گروه‌های عناصر ، کاملا متفاوت دارد.

  • اختلاف عمده فلزات و دیگر جامدات و مایعات ، در توانایی هدایت گرما و الکتریسیته است. هادی خوب آزمایش‌های مربوط به گرما جسمی است که ذرات آن طوری تنظیم شوند که بتوانند آزادانه نوسان یافته و به ذرات مجاور خود نیز امکان نوسان آزاد را بدهند. "گرم شدن" همان نوسانات سریع یون‌ها و الکترون‌ها است. در فلزات چون گروه الکترون‌ها ، غبار مانند یون‌ها را احاطه می‌کنند، طبعا هادی‌های خوبی برای حرارت هستند (رسانش گرمایی فلزات).

مقاومت فلز

مقصود آن مقدار باری است که فلز می‌تواند تحمل کرده ، نشکند. بسیاری از فلزات ، وقتی گرم هستند، اگر تحت فشار قرار گیرند، شکل خود را زیادتر از موقعی که سرد هستند، تغییر می‌دهند. بسیاری از فلزات در زیر فشار متغییر مانند نوسانات ، آسانتر از موقعی که سنگین باری را تحمل می‌کنند، می‌شکنند.

چرا فلزات ظاهر درخشنده یا براق دارند؟

دلیل اول آن است که با طرح ریزی و براق کردن صحیح می‌توان فلزات را به شکل خیلی صاف تهیه کرد. گر چه آنها نیز تصاویر را خوب منعکس می‌کنند، ولی ظاهر سفید و درخشان بیشتر قطعات فلزی صیقلی شده را ندارند. بطور کلی جلا و درخشندگی فلز بستگی دارد به گروه الکترون‌های آن دارد.

الکترون‌ها می‌توانند هر نوع انرژی را که به روی فلزات می‌افتد جذب کنند؛ زیرا در حرکت آزاد هستند. بیشتر انرژی الکترون‌ها از تابش نوری است که به آنها می‌افتد، خواه نور آفتاب باشد یا نور برق. اکثر فلزات همه انرژی جذب شده را پس می‌دهند، به همین دلیل ، نه تنها درخشان بلکه سفید به نظر می‌آیند.

چرا فلزات تغییر شکل می‌دهند؟

بسیاری از فلزات در حرارت ویژه‌ای ، آرایش یون‌های خود را تغییر می‌دهند. با تغییر ترتیب آرایش یون‌های بسیاری از خصوصیات دیگر فلز نیز دگرگون می‌شود و ممکن است فلز کم و بیش شکننده ، قردار ، بادوام و قابل انحنا شود یا اینکه انجام کار با آن آسان گردد. بسیاری از فلزات در هنگام سرد بودن ، به سختی تغییر شکل می‌پذیرند. بیشتر فلزات جامد را به زحمت می‌توان در اثر کوبیدن به صورت ورقه و مفتو‌ل‌های سیم در آورده ، ولی اگر فلز گرم شود، انجام هر دو آسان است.

img/daneshnameh_up/5/5c/tirahanb.jpg

الکترون

img/daneshnameh_up/c/c6/electron3.gif

ساختار اتم الکترونی

چنانچه گفته شد اتمها از ترکیب الکترونها و پروتونها شکل گرفته‌اند و هسته اتمها نیز از پروتونهای مثبت و نوترونهای خنثی تشکیل شده است. به این ترتیب ، اتم خنثی هسته‌ای با بار مثبت دارد که با الکترونهای (منفی) احاطه شده است. اندازه هسته در هر اتم از مرتبه حدود 10/1 اندازه‌ اتم است. بقیه حجم اتم را الکترونهای مداری در اشغال خود دارند.

انتقال الکترونها

در رسانای الکتریسته (که معمولا از جنس فلزند) ، مسیرهایی برای انتقال سریع الکترونها وجود دارد. یونها (اتمها و مولکولهای با بار الکتریکی مثبت یا منفی در محلولها) نیز می‌توانند رساننده الکتریسته باشند. الکتریسته می‌تواند در هوا یا گازهای دیگر نیز منتقل شود، این انتقال یا به صورت جرقه‌ای است که چشمه‌ای با ولتاژ زیاد (چند هزار ولت به ازای هر سانتیمتر فاصله) آن را در فشار جو بوجود می‌آورد. و یا در فشار کم نظیر آنچه در لامپهای نئونی روی می‌دهد به صورت تخلیه الکتریکی است.

گسیل الکترون

فلزات داغ الکترونهای فراوانی گسیل می‌کنند که آنها را می‌توان در خلأ خوب به صورت پرتوهای کاتدی شتاب داد. این پرتوهای تولید شده در لامپ کاتدی را می‌توان به کمک میدانهای الکتریکی و مغناطیسی فلوئورتاب کانونی کرد. لامپهایی که بر این اساس کار می‌کنند در میکروسکوپهای الکترونی ، صفحه‌های نمایشی رایانه‌ها و همچنین در تلویزیونها کاربرد دارد.

بر اثر کوششهایی که برای عبور جریان برق در خلا به عمل آمد ، یولیوس پلوکر در 1859 پرتوهای کاتدی را کشف کرد. موضوع از این قرار بود که دو الکترود در یک لوله شیشه‌ای وارد کردند و پس از مسدود کردن لوله ، هوای آنرا تقریبا بطور کامل بیرون کشیدند. وقتی یک ولتاژ زیاد بین دو الکترود برقرار گردید، از الکترود منفی که کاتد نامیده می‌شود پرتوهایی گسیل یافت. این پرتوها بار منفی دارند، بر خط راست سیر می‌کنند و بر دیواره مقابل کاتد موجب تلألو می‌شوند. لامپهای تصویری که در صفحه تلویزیون و صفحه نمایشهای کامپیوتری بکار می‌روند. لوله‌های پرتو کاتدی جدیدی هستند، در این لامپها پرتوها بر صفحه‌ای متمرکز می‌شوند. این صفحه با موادی پوشیده شده‌ که هنگام برخورد با تابش پرتوها درخشش ایجاد می‌کنند.

در اواخر سده نوزدهم ، پرتوهای کاتدی بطور وسیعی مورد بررسی قرار گرفت. آزمایشهای متعدد دانشمندان به این نتیجه انجامید که پرتوهای مذکور جریانی از ذرات بار دار منفی است که حرکتی سریع دارند. این ذرات همانطور که استونی پیشنهاد کرده بود الکترون نامیده شد. این الکترونها که از فلز کاتد ناشی می‌شوند همواره یکسانند و به جنس فلز بستگی ندارند. چون بارهای ناهمنام یکدیگر را جذب می کنند، جریان الکترونهایی که پرتوی کاتدی را بوجود می‌آورند هرگاه از میان دو صفحه با بارهای مخالف بگذرند به طرف صفحه‌ای که بار مثبت دارد کشیده می‌شوند. بنابراین پرتوهای کاتدی در یک میدان الکتریکی از مسیر عادی مستقیم خود منحرف می‌شوند. درجه این اختلاف به دو عامل بستگی دارد:


  1. انحراف بطور مستقیم با اندازه بار ذره تغییر می‌کند. ذره‌ای که بار بیشتری دارد بیشتر از ذره‌ای که بار کمتری دارد منحرف می‌شود.
  2. انحراف بطور معکوس با جرم ذره تغییر می‌کند. ذره‌ای با جرم بزرگتر کمتر از ذره‌ای با جرم کوچکتر منحرف می‌شود.

انواع الکترونها

الکترون آزاد

الکترونی که از اتم جدا شده و به آن بستگی ندارد. الکترونهای بیرونی‌ترین لایه‌های اتمهای فلزات بستگی کمتری نسبت به اتمهای خود دارند و با گرفتن انرژی کوچکی از این اتمها کنده می‌شوند و به شکل توده‌ای از ابر یا گاز ، شبکه‌های اتمی فلزات را در بر می‌گیرند. هنگامی که الکترونهای آزاد در میدان الکتریکی قرار گیرند، جریان الکتریکی بوجود می‌آید.

الکترون اوژه

الکترون اوژه نوعی الکترون آزاد است که از اتم یا یون گسیل می‌شود. الکترون اوژه از بازآرایی الکترونهای مقید از اتم یا یون اولیه سرچشمه می‌گیرد. این بازآیی از واکنش الکترون - الکترون که مولد نیروی دافعه است و می‌تواند بر نیروی جاذبه ناشی از برهمکنش الکترون - هسته فایق آید، صورت می‌گیرد. با آن همه بازآیی یاد شده تنها هنگامی می‌تواند رخ دهد که حداقل جای یک الکترون در تراز انرژی معین اتم یا یون اولیه خاصی باشد و در تراز با انرژی بیشتر از انرژی تهی جا حداقل دو الکترون وجود داشته باشد، یکی از الکترونهای تراز بالاتر به تراز دارای تهی جا سقوط می‌کند و الکترون دیگر به صورت الکترون آزاد از اتم خارج می‌شود.

الکترون ظرفیت یا الکترون والانس

هر یک از الکترونهای لایه خارجی اتم که در ایجاد پیوندهای شیمیایی شرکت می‌کنند.

الکترون رسانش

اتمهای هر فلزی با پیوندهای کووالانسی که راستای کاملا مشخص ندارند و میان چندین اتم پخش شده‌اند، به همدیگر مقید هستند. بنابراین الکترونهایی که قیدشان در ضعیفترین حد است (الکترون ظرفیت) می‌توانند در سراسر فلز حرکت کنند. این الکترونهای متحرک که الکترون رسانش نامیده می‌شود در خواص الکترونی و انتقال گرما در فلزها دخالت دارد.


  • مدل گاز آزاد فرمی: برای فلزهای ساده مانند (pb , TI , In , GA , Al , Ba , Sr, Ca , Mg , Be , Rb , Cs , Ka , Na , Li) سهم الکترون رسانش در رسانندگی گازی از فرمیونها بدون برهمکنش و با چشم پوشی از انرژی پتانسیل ناشی از بخش مرکزی یونها ، می‌توان محاسبه کرد. در این مدل ، انرژی مجاز الکترونهای رسانشی پیوسته‌اند و در انرژی فرمی εf با یک سطح کروی فردی روبرو هستیم.

  • خواص الکترونی: وقتی یک میدان الکتریکی خارجی به فلز اعمال می‌شود الکترونهای رسانش شروع به شتاب گرفتن می‌کنند. اما برخورد این الکترونها با ناخالصیها به فوتونها ، ناکاملیهای شبکه ، حرکتشان را کند می‌کند، این فرآیند منجر به حالتی مانا می‌شوند که در آن سرعت سوق برای الکترون رسانش عبارت است از: v = -eET/m
که در آن e بار الکترون ، E میدان الکتریکی ، T زمان میانگین بین برخورد (یا زمان واهلش) و m جرم الکترون است.


  • سرعت سوق الکترون: میانگین سرعتی که با آن الکترونها یا یونها ، بر اثر میدان الکتریکی در ماده‌ای رسانا یا نیم رسانا جابجا می‌شوند. نیم رساناهای خالص و آلاییده دارای حاملهای (الکترونها و حفره‌های رسانش) آزادی هستند که تحت تأثیر میدان الکتریکی ممکن است در داخل جسم جابجا شوند. تعداد الکترونها و حفره‌ها به جنس نیم رسانا و میزان و نوع آلایش و دمای آن بستگی دارد. اما در هر نیم رسانای قابل استفاده این تعداد معمولا بین 1022 تا 1026 الکترون یا حفره در هر متر مکعب است. در غیاب میدان الکتریکی این حاملها در جهت کاتوره‌ای در جسم حرکت می‌کنند و بنابراین جریان الکتریکی خالص بوجود نمی‌آورند.

    هر گاه میدان الکتریکی برقرار شود، بر حاملها نیروی الکتریکی وارد می‌شود و در جهت نیرو به آنها شتاب داده می‌شود، که این امر به ایجاد جریان الکتریکی می‌انجامد. اما حاملها با اتمها و نقص بلور ، مانند ناخالصیها و دررفتگیها نیز برهمکنش و برخورد نیز دارند و این برخوردها سبب میشوند سرعت الکترون کاتوره‌ای شود. به این ترتیب الکترونها و حفره‌ها در جهت نیروی الکتریکی دارای سرعت متوسطی هستند. و این سرعت متوسط یا سرعت سوق با توازن بین نیروی الکتریکی در زمان T فاصله زمانی میانگین بین برخوردها مشخص می‌شود.

    سرعت برخورد برابر است با Vp = eTE/m که در آن ، E میدان الکتریکی اعمال شده بر حسب ولتمتر را ، e بار الکترون و *m جرم مؤثر حامل است.

اسپین الکترون

اسپین یکی از ویژگیهای درونی ذرات است. اسپین خاصیتی است که به غیر صفر بودن تکانه زاویه‌ای ذره ساکن مربوط می‌شود، اینکه الکترونها دارای اسپین هستند از اهمیت خاصی برخوردار است. اسپین الکترون در شیمی و در جنبه‌هایی از رفتار ماده معمولی ، بویژه در پدیده‌های مغناطیسی نقش اساسی ایفا می‌کند. الکترون حامل اسپین 2/1 هسته و این بدان معنی است که برای الکترون ساکن اندازه گیری تکانه زاویهای نسبت به یک محور مفروض به یکی از دو نتیجه ممکن ħ/2 ± می‌انجامد ħ = h/2π ثابت کاهیده پلانک است.

اسپین الکترون دو پیامد نیزدیکی دارد: یکی اینکه الکترونها را به صورت آهنربایی میکروسکوپیکی در می‌آورد، که هم میدان مغناطیسی تولید می‌کنند و هم در برابر میدان مغناطیسی واکنش نشان می‌دهند. دیگر اینکه یک درجه آزادی داخلی نمی‌توانند حالت کوانتمی یکسان داشته باشند و این خاصیتی است به فرمیون بودن الکترونها مربوط می‌شود.

پراش الکترون

فیزیک کلاسیک ، الکترونها را ذراتی در نظر می‌گیرد با جرم و بار معین ، برهمکنش الکترون با میدانهای الکتریکی و مغناطیسی را می‌توان بر حسب حرکت ذره توضیح داد. آزمایشهای اولیه با لامپ پرتوی کاتودی که باریکه الکترون را فراهم می‌آورد، نشان داد که اجسام کوچکی که در لامپ قرار داده شوند روی پرده فسفری سایه واضح می‌اندازند. این آزمایش با تصویر کلاسیکی الکترون به صورت ذره کاملا سازگار است.

قانون اهم

قانون اهم که به نام کاشف آن جرج اهم نام گذاری شده است، بیان می دارد که نسبت اختلاف پتانسیل (یا افت ولتاژ) بین دو سر یک هادیمقاومت) به جریان عبور کننده از آن به شرطی که دما ثابت بماند، مقدار ثابتی است:

V \over I} = R}


که در آن V ولتاژ و I جریان است. این معادله منجر به یک ثابت نسبی R می شود که مقاومت الکتریکی آن وسیله نامیده می شود. این قانون تنها برای مقاومتهایی صادق است که مقاومت شان به ولتاژ اعمالی دو سرشان وابسته نباشد که به این مقاومت ها مقاومت های اهمی یا ایده آل یا وسیله های اهمی گفته می شود.
خوشبختانه شرایطی که در آن قانون اهم صادق است، بسیار عمومی است.( قانون اهم هیچگاه برای ابزارهای دنیای واقعی کاملا دقیق نیست چرا که هیچ ابزار واقعی وجود ندارد که یک ابزار اهمی باشد).
معادله V / I = R حتی برای ابزارهای غیر اهمی هم صادق است اما در آن صورت دیگر مقاومت R یک مقدار ثابت نیست و به مقدار V وابسته است. برای اینکه بررسی کنیم که آیا ابزاری اهمی است یا نه، می توان Vرا بر حسب I رسم کرد و نمودار بدست آمده را با خط مستقیمی که از مبدا می گذرد مقایسه کرد.
معادله قانون اهم اغلب بصورت :

V = I \cdot R


بیان می شود چرا که این معادله صورتی است که اکثر اوقات همراه مقاومت ها بکار برده می شود.
فیزیکدانان اغلب فرم میکروسکوپیک قانون اهم را استفاده می کنند:

{mathbf{j} = \sigma \cdot \mathbf{E\


که در آن j چگالی جریان ( جریان عبوری از واحد حجم)، & هدایت و E میدان الکتریکی است. و در واقع فرمی است که اهم قانونش را بیان کرد. فرم عمومی V = I·R که در طراحی مدارات بکار می رود، نسخه ماکروسکوپیک متوسط گیری شده فرم اصلی است.
دانستن این مطلب مهم است که قانون اهم یک قانون گرفته شده از ریاضیات نیست ولی بخوبی توسط شواهد تجربی تایید می شود. گاهی اوقات هم قانون اهم به هم می خورد چرا که این قانون بسیار ساده سازی شده است.
منشا اصلی به وجود آمدن مقاومت در مواد در برابر جریان الکتریکی را می توان عیب ها، ناخالصی های مواد و این واقعیت که الکترون ها خودشان اتم ها را به این طرف و آن طرف می زنند، دانست. وقتی که دمای فلز افزایش می یابد، عامل سوم نیز افزایش می یابد بنابراین، وقتی که یک جسم به علت عبور جریان الکتریکی از آن گرم می شود، مانند رشته داخل حباب لامپ، مقاومتش افزایش می یابد.
مقاومت یک جسم از معادله زیر بدست می آید:

(R = \frac{L}{A} \cdot \rho = \frac{L}{A} \cdot \rho_0 (\alpha (T - T_0) + 1


که در آن & مقاومت ویژه، Lطول جسم هادی، A مساحت سطح مقطع آن، T دمای جسم، T_0 یک دمای مرجع (معمولا دمای اتاق) و rho_0 و alpha ثابت های ویژه ماده جسم هادی اند.

رابطه با هدایت گرما


معادله انتشار الکتریسته که بر اساس اصول اهم بیان شده است، مشابه معادله جیان-باپتیست-ژوزف فوریر برای انتشار گرما است و اگر ما در روش حل فوریر یک مساله هدایت گرمایی کلمه دما را به پتانسیل الکتریکی تغییر داده و جریان الکتریکی را به جای شار گرمایی بکار ببریم، در آنصورت ما دارای روش حل فوریر مساله مشابه برای هدایت الکتریکی خواهیم بود. پایه کار فوریر ایده و تعریف واضح او از هدایت بود. اما امر این شامل فرضی است که بی تردید برای گرادیان های دمای کوچک درست است. فرض در نظر گرفته شده این است که اگر تمامی متغیر ها ثابت باشند، شار آزمایش‌های مربوط به گرما به شدت متناسب با گرادیان دما است.
فرض کاملاً مشابهی هم در بیان قانون اهم گذاشته شده که اگر مابقی متغیرها یکسان در نظر گرفته شوند، قدرت جریان در هر نقطه متناسب با گرادیان پتانسیل الکتریکی است. با روش های پیشرفته موجود، بررسی دقت این فرض در الکتریسته از آزمایش‌های مربوط به گرما بسیار آسانتر است.


موتور الکتریکی

مقدمه

یک موتور الکتریکی ، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد.



img/daneshnameh_up/4/44/electromotor.jpg




اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

انواع موتورهای الکتریکی

موتورهای DC

یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند.
اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

موتورهای میدان سیم پیچی شده

آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

موتورهای یونیورسال

یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.

مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

موتورهای AC

  • موتورهای AC تک فاز:
معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.

هنگام راه اندازی ، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.


  • موتورهای AC سه فاز:
برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده می‌کنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز ، به گردش در می‌آید. موتورهای سنکرون را می‌توانیم به عنوان مولد جریان هم بکار برد.

سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش ، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور ، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.

موتورهای پله‌ای

نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی ، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش می‌شوند، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتا کنترل شده ، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با کامپیوتر یکی از فرمهای سیستمهای تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند.

موتورهای خطی

یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش ، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع السیر ماگلیو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند.

جریان متناوب

مولد القایی ساده :


ساده‌ترین نمونه مولد القایی ، نیروی محرکه الکتریکی به وجود آمده در پیچه چرخان در میدان مغناطیسی ، متناوب است. بنابراین ، جریان حاصل از مولد القایی متناوب است مگر اینکه تمهیدات خاصی جهت یکسو کردن آن اعمال شود، به جریان ثابت یا مستقیمی که جهتش تغییر نمی‌کند تبدیل شود.

البته مولدهای جدید صنعتی اغلب برای توانهای عظیمی طرح می‌شوند ( 200 تا 400 هزار کیلووات در یک ماشین تولید می‌شوند) که از نمونه ساده بسیار پیچیده تر می‌باشند. چنین ماشینی با تمام وسایل کمکی جهت نظارت به کار ، حفاظت از آسیب دیدن ، توزیع جریان مشترکین و غیره یک ساختار مهندسی پیچیده است. البته به رغم پیچیدگی‌هایی که می‌توانند برای نمونه ساده فراهم آورند تمام این قسمت‌ها برای کار هر مولدی لازم است.

ساختمان مولد ها :


قسمت‌های اساسی هر مولد جریان عبارتند از :



  • حلقه‌های لغزان زغالی :
    یعنی حلقه‌های لغزانی با تیغه‌های تماس (زغال‌ها) که روی حلقه‌ها می‌لغزند و منظور از آنها گرفتن یا رساندن جریان به قسمت چرخان مولد است. قسمت چرخان مولد ، چرخانه «روتور) مولد نامیده می‌شود، در حالیکه قسمت بی حرکت پوسته «استاتور) نام دارد.

مکانیزم کار مولد جریان متناوب :


وقتی که آرمیچر در میدان مغناطیسی القاگر می‌چرخد، یعنی آرمیچر و چرخانه و القاگر پوسته است، نیروی محرکه الکتریکی القا می شود. البته می‌توان القاگر را چنان چرخاند که آرمیچر ساکن بماند. پس هم چرخانه و هم پوسته می‌توانند نقش القاگر و آرمیچر را ایفا کنند. در هر دو مورد ، چرخانه باید به حلقه‌های لغزان و زغالها مجهز باشد که در مدت چرخش آن تماس دائمی برقرار باشد.

ولی مناسب‌تر است که از طریق تماس‌های لغزشی جریان نسبتا ضعیف لازم برای آهنربا کرن القاگر تامین می‌شود. از طرف دیگر ، جریان حاصل در مولد مقادیر عظیمی به دست می‌آورد، و به این دلیل بهتر است که این جریان از پیچه‌های ساکن گرفته شود که مستلزم تماس‌های لغزشی نیست. بنابر‌این ، در مولدهای پر قدرت قسمت‌های ساکن ترجیحا به صورت آرمیچر و چرخانه‌ها به صورت القاگر به کار برده می‌شوند.

حصور آهنربا در مولد‌ها :


برای اینکه شارهای مغناطیسی شدید از سیم پیچ‌های آرمیچر بگذرد و در نتیجه تغییرات این شارها شدید باشد، آرمیچر هسته‌ای آهنی دارد که دو انتهای آن به شکلی است که فقط فاصله کوچکی که برای چرخش لازم است بین قطب‌های مغناطیس و هسته وجود دارد. در مولدهای صنعتی ، القاگرهایی که میدان مغناطیسی را ایجاد می‌کنند بطور عمده آهنرباهای الکتریکی هستند.

در طرح مولدهای کم توان ، گاهی از آهنرباهای دایمی به عنوان القاگر استفاده می‌شود. مگنت‌ها یعنی ، مولدهای کوچکی که در بعضی از انواع موتورهای درونسوز برای احتراق مخلوط سوخت گاز در سیلندر موتور با کمک جرقه به کار می‌روند، از این نوع هستند.

القاگر مولد ac با قطب‌های داخلی :


اگر در القاگر فقط یک جفت قطب داشته باشیم، دوره جریان الکتریکی متناوب به زمان یک چرخش القاگر مربوط است. پس ، برای داشتن جریان متناوبی با فرکانس 50Hz ، چرخانه باید با سرعت 50 دور در ثانیه (یا 3000 دور در دقیقه) ، بچرخد که عملا برای ماشین‌های بزرگ ناممکن است.

از طرف دیگر ، با تعداد زیاد جفت قطب‌ها ، دوره جریان به زمانی مربوط می‌شود که برای چرخیدن چرخانه به اندازه کسری از دایره که توسط جفت قطب اشغال می‌شود لازم است. مثلا اگر 6 جفت قطب داشته باشیم، برای بدست آوردن جریان متناوبی با فرکانس 50Hz کافی است که چرخانه با سرعت 500 دور در دقیقه بچرخد.

نظرات  (۱۳)

  • محمد حسین آذرینوار
  • عالی بود
    http://ahdshia.blog.ir
    10 نه  15 نه   18  نه   19  نه  20 هم نه 19/5
    20
    در مورد ازمایشات الکتریکی نیز مطلب بزار
    پاسخ:
    سلام
     اگر منظورتون مدار الکتریکی است که  خواهم گذاشت.

  • لبوآلوورایی
  • مطالبت ار بروز کن
    بروز باش
  • لبو الوورایی
  • مطالبت باهاله
    به نظرات توجه کننننننننننننننن
    در مورد مدار ها بیشتر صحبت شود
    در مورد مدار ها هم صحبت شود.
    نقش مدار چشمک ن را نیز اضافه کن
    نقشه مدار هم اضافه کن محمددددد
    از20 بهت 19/75 میدهم چون انتقال گرما به الکتریکی چه ربطی دارد؟
    ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
    شما میتوانید از این تگهای html استفاده کنید:
    <b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">